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1 Laser Sources and Principle of Operation

1.1 Absorption, spontaneous emission, stimulated emission

Do consider an ideal atom characterized by two possibile energy levels, known as 2-level model.
When a photon emitted by the atom, the electrons involved in this dynnamic correspond to
this energy transition.

Uupper − Llow = Eph ⇒ E2 − E1 = hν

When the photon is absorbed the electron get excited and transits from the lower level to the
upper one. Viceversa, if the electron decays, it releases energy in the form of photons.

The stimulated emission is the particular mechanism that happens inside an ampli�er: the
atomic concentration of the upper energy level is higher than that of the lower one, N2 > N1.
When this condition, called population inversion, is satis�ed, the incident photon causes a
coherent emission: the emitted photon has the same frequency and phase of the incident one.
Besides, if N2 = N1 the material is said to be "transparent".

1.2 Laser Oscillation

We need an active medium, a pump mechanism and the physical structure to allow the electro-
magnetic radiation to oscillate: it's called (cavity). Inside the cavity the losses are caused by
di�raction and absorpton, when gain is equal to total losses the oscillator is said to be stable
(by de�nition).

Optical length: Lopt = (L− l)1 + l nam = L+ l(nam − 1)

Round trip: τrt = 2Lopt

c

1.3 Optical Ampli�cation

First of all, with the 2-levels model, in the case of N1 = N2 = N0/2, the stimulated emission is
not achievable because the probabilties of emission and absorption are equal. Furthermore we
cannot pump N1 higher than N/2, so we need more levels

For example, the ruby is used to obtain the classic red laser that we all know, and it's a 3-level
model. It emits light at λ = 690nm. In this case the active medium is realized doping the
Al2O3 with Cr

3+ atoms.
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Note that the lasing emission is possible provided that Nu > Nl and:

τ21 � τ10: for a 3-level laser

τ32, τ10 � τ21: for a 4 level laser

In other words: non-radiative emission must be way faster than lasing emission. Note that the
4-level laser can actually work as a 2-levels laser as long as levels 3 and 1 are really close to
levels 2 and 0.
An example of 4-levels is Nd : Y AG, known as neodimium laser.

1.4 Quantum defect/E�ciency

Start observing this following law: hνpump > hνlaser
The energy lost is trasformed into lattice vibrations: the temperature increases as result of the
non radiative emissions.
Quantum defect:

QD = ∆E = Epump − Elaser = hνp − hνL =
(

1− νL
νp

)
hνp = QD%hνp

Quantum e�ciency:

QE =
EL
Ep

=
λp
λL

[%] = 1− ∆E

Ep
= 1−QD%

1.5 Optical Gain

Microscopically :

Optical intensity: I
[ W
cm2

]
Population inversion: ∆N = N2 −N1

[
cm−3

]
Ampli�cation by units of length:

dI

dz
= σ(N2 −N1)I
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Macroscopically :

Integration of I: I(l) = I0exp(σ(N2 −N1)l)

Gain: Gopt =
I(l)

I(0)
= exp(gl)

1.6 Fabry-Perot optical resonators ("etalons")

Re�ectivity of the mirror: R =
Pr
Pi

Loss-less with zero attenuation: Pt = Pi − Pr

Real relation: Pt < Pi − Pr

Transmittivity: T =
Pt
Pr

Re�ectivity and Trasmittivity: R + T = 1

In general: R + T + A = 1

Do consider the following scheme representing the oscillation of the generic electromagnetic
wave:

Following the path of a "round-trip", it's evident that a wave doesn't disappear only if it
respects the condition of constructive interference. For this reason the waves that can survive
inside the cavity are those which respect the following mathematical condition:

2L = mλ m = 0,±1,±2, . . .

If we look at the picture, the red stripes refer to interference optimals, while the white ones
correspond to the nodes.

Resonant condition: L = mλ/2

Resonant frequencies: νm = m
c

2L

Free Sprectral Range: ∆νFSR = νm+1 − νmu−1 =
c

2L

Note: the FSR is literally the distance between two peaks.
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1.7 Transmission curve

Observe with attention the following picture:

We call full width at half maximum, or transmission linewidth, the value δν, which represent
the "spread" around a resonant frequency of the wave transmission curve. The professor uses
the term ∆νc, but "c" is replaced with a e when the cavity id a �lter.

Finesse: F =
∆νFSR
δν

Round-trip phase di�erence: ϕ = Ks =
2π

λ
2L = · · · = 2π

ν

∆νFSR

Transmission explicit expression:
Pout
Pin

= T =
(1−R1)(1−R2)

1 +R1R2 − 2
√
R1R2 cosϕ

Observing the round-trip phase di�erence, when ν/∆νFSR is an integer the corresponding value
of the transmission function is at one maximum. On the other hand, the only one possibiliy
to have T = 0 occurs for R1 ord R2 equal to 1, but it's actually impossible.
Now, we de�ne a unique value for the re�ectivity of the oscillator: R =

√
R1R2.

Peaks becomes narrower when R increases: the selectivity improves and F becomes higher too.

Finesse : F =
∆νFSR
δν

≈ π

(1−R)

√
1 +R2

2
≈ π
√
R

1−R

Visibility: V =
TMax − TMin

TMax + TMin

≤ 1
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1.8 More Properties

Loss of photons over time: Nph = Nph,0 exp

(
t

τc

)
Cavity lifetime: τc =

L

cγ

Cavity Linewidth: ∆νc =
1

2πτc

Quality factor (resonant factor): Q =
ν

∆νc
=

ν

∆νFSR
F

1.9 Optical Gain (2)

The threshold is the starting condition after which we can measure an optical gain associated
to the beam emitted by the oscillator. Hence, �rst of all, population inversion must occur
inside the active medium. Next, consequently, the threshold is achieved when gain is equal to
total losses.

Threshold condition: ∆NMIN ≡ ∆Nth > 0

Round-trip : I0 7→ GI0 7→ R2GI0 7→ R2G
2I0 7→ I0R1R2G

2

Gain equal losses: I0 = I0R1R2G
2

Threshold gain: Gth =
1

R1R2

=
1

R

Now, recalling the exponentional de�nition of gain:

exp[2σ(N2 −N1)l] =
1

R

Hence:

σ(N2 −N1)l =
1

2

[
− ln(R1)− ln(R2)

]
= γ

We have �nally obtained the relation between the threshold condition and the level of
pumping, gauged by N2 −N1:

(N2 −N1)th =
γ

σl

In the end we de�ne also the slope e�ciency as follows:

ηslope =
dPlaser
dPpump

We can logically understand why, at least initially, the higher is the pumping, the higher is
the output power. However, at some point the laser would saturate (the losses expression is
logarithmic) and the relation becomes less then proportional.
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2 A realistic approach

2.1 General concepts

For istance, this means that the pumping can be less precise: an incident radiation at λp,min
lets the transition from ground to E3,max, while at λp,max transition occurs from ground to
E3,min.

For what concerns the gain of an active medium, take a look at the gain versus wavelenghts
plot. This curve, that looks like a hill, it's actually a distribution function that shows for each
value of pumping wavelenght the corresesponding gain obtainable. Do remind that the gain is
proportional to the di�erence in atomic concentrations between the levels involved in the
lasing emission.

Now, since we are going to use a cavity of Fabry-Perot, it's important to remember that the
oscillations are allowed for speci�c and periodic values (equally spaced in frequency). These
"values" of λ, or ν, are called modes of the cavity. In particular, the trasmission (or the gain
of the light emitted) is supposed to be same for every mode.

Which modes survives inside the cavity?
To know that, we must overlay the previous plots. The modes (called longitudinal) for which
the trasmission is more the GFWHM but less than G are those wich survive.

How do you �lter one resonant frequency/ only one longitudinal mode?

Using a band-pass �lter realized by means of another Fabry-Perot cavity, with: ∆νe < c/2Lopt

(the cavity linewidth is less than FSR of the longitudinal modes). Moreover, if we have
FSRE >≈ GFWHM/2 only one mode is allowed, since the �lter singles out only one peak that
respect the constraining laws of the two cavities.

2.2 Single-frequency semiconductor lasers

We need very selective mirrors. In the following a brief list of the solutions between we can
choose:

� Distributed Bragg Re�ector

� Distirbuted Feed-back

� VCSEL: vertical cavity surface emitting laser

2.3 Pulsed Laser

Q-Switchin. Recall that the greater the Q-factor, the shorter the bandwidth, the higher the
amplitudes corresponding to admissible frequencies and the lower the losses.

More precisely, the "Q-switch" is an attenuator that is added to the structure and it's
exploited for changing the Q-factor at the right istant.
The thecnique of Q-switching starts with the pumping of the active medium with a low
Q-factor value. In this situation, since the losses are high, the lasing emission does not occur,
but the amount of energy stored in the gain medium increases as it is pumped. Next, when it
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gets saturated (there are inevitable losses associated to other processes; for istance, the
spontaneous emission), we increase the Q-factor moving the Q-switch. The lasing emission
occcurs very rapidly and a very high peak energy pulse of light is emitted.
There are two types of Q-switching laser: the electro-optic and the acousto-optic.

Time travel between repetitions: TREP , but depends one the Q-switch;

Pulse duration: τp ≈ 10ns, depends on the active medium;

Duty cycle: τp/TREP , low duty cycle, high peak power.

Mode locking . It's not requested to explain how it works, or the principle underlying its
functionality. However, compared to Q-switching, the mode locking lasers produce much
higher pulse repetition rates, much lower pulse duration and greater pulse energies.

Time travel between repetition: TREP =
c

2L

Frequency of the repetition: fREP =
1

TREP

Pulse duration: τp =
1

Blaser

∝ 1

GFWHM

Peak Power: very high, up to MW, or GW

2.4 Comparison: pulsed Nd:YAG versus Nd:glass lasers

We know that c = λν.

To �nd the relation between the variations of wavelength and frequency, we derive over λ and
over ν. We obtain:

∆λ

λ
= −∆ν

ν

For example, �xing λ = 1mm(ν = 300Thz), we compute ∆λY AG ≈ 0.4nm, and ∆λglass ≈
40×∆λY AG.
Consequently, exploiting the relation derived above, we can evaluate the gain badnwidth in
terms of frequency:

∆νY AG = 125GHz, ∆νglass = 5THz

Hence, the pulse durations (in mode locking regime) are:

τp,Y AG ≈
1

∆νY AG
≈ 8ps, τp,glass ≈

1

∆νglass
≈ 200fs

The glass laser is more reactive than Nd:YAG laser. However is more fragile. On the other
hand, the Nd:YAG laser can emit more powerful pulses, but they last longer.

Moreover, I must mention this further useful relation: Ppeakτp = PAV ET .
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3 Laser Source: properties and applications

Note that, sometimes, we have taken the sun (or a generic lamp) as reference to give a numerical
idea of these following parameters.

� Main properties of laser source (in general):

� Monochromaticity (∆νlaser ≈ 10−12∆νsun)

� Brightness (Blaser � Bsun)

� Directionality (Ω = πθ2 → Ωlaser ≈ 10−10Ωlamp)

� Stability in amplitude (∆P/P ≈ 10−6)and frequency(∆ν/ν ≈ 10−15 )

� Ultrashort pulses, high peak power

� Size

� Propagation: it depends on the medium in which the pulse is travelling

� Commercial use

� Physical properties of lasers

� Spatial quality of the beam, known as spatial coherence. It's related to the direc-
tionality;

� Spectral quality, known as temporal coherence. It's related to the monochromaticity:

� The color: another name for the wavelength;

� State of Polarization

� Optical Power or Pulse Energy

3.1 Properties of Laser Beams

Plotting the optical intensity of the fundamental mode(TEM00), on the trasverse axis, we �nd
out that the electric �eld distirbution resembles a Gaussian function. The mode is
symmetrical in both direction x and y.

Spot size: ω

Beam waist: ω0, where the beam is narrowest

Reference condition: minimum at z = 0, ω > ω0 for z 6= 0

Electric �eld distribution: Ex = E0 exp

[
− r

2

ω2
0

]
= E0 exp

[
−x

2 + y2

ω2
0

]
Intensity: I = I0 exp

[
−2

(
x2 + y2

ω2
0

)]
Intensity constant: I0 = 2

P0

πω2
0

Optical power: P (r) = P0

[
1− exp

(
−2

r2

ω2
0

)]

10



FREE-SPACE PROPAGATION

Spot broadening (divergence): ω2 = ω2
0 +

(
λz

πω0

)2

Rayleigh range: zR =
πω2

0

λ

Hence: ω = ω0

√
1 +

(
z

zR

)2

When z < zR we are in the near-�eld region, and in this region the beam is said to be
collimated. Besides, we can approximate ω ∼ ω0, thus ω ≈ 1.4ω0.

When z > zR the "enlargement" of the beam becomes important. We call this region far-�eld
region, in which the beam is said to be divergent (linearly).
Hence, supposing z � zR:

ω ≈ λ

πω0

z = θz

And θ is the parameter that gauges the divergence:

θ =
dω

dz
=

λ

πω0

In the end we de�ne the M-factor:

M2 =

(
θMultiMode

θDL

)
> 1

3.2 Frequency Noise

The electric �eld varies with the frequency

E(t) = E0 exp{−j[2πν0t+ ϕ(t)︸ ︷︷ ︸
φtot

]}

With ∆ν/ν0 � 1. Let's compute the istantaneous frequency:

ν(t) = (1/2π)
dφtot
dt

= ν0 + (1/2)
dϕ(t)

dt
= ν0 + ∆ν(t)

Now, recalling the resonant frequencies de�nition:

ν = m
c

2L
→ ∆ν = m

c

2L2
(−∆L)→ ∆ν

ν
= −∆L

L

Hence changing the length of the cavity will a�ect the �uctuations both in terms of frequency
or wavelength.
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4 Optical Power

4.1 Introduction

Electric �eld: E = E0 exp(−jω0t) [V/m]

Characteristic impedance of vaccum: η =

√
µ0

ε0
= 377Ω

Inensity (∝Irradiance): I =
E × E∗

η
=
E2

0

η0

[W/m2]

Power: P =
∫
IdS[W ]→ E0 ∝

√
P0

We use laser to emit a laser beam ad detector to receive it. This detectors can be based on
semiconductor technology or be thermally reactive.
In the �rst case we can choose between two types of device: photo-voltaic or photo-conductive.

Range of values: 0.1µm ≤ λ ≤ 10µm

Quantum e�ciency: η =
∆Ne

φ∆t
=

#photo-electrons

#incident photons
[%]

Photons �ux (microscopic paremeter): φ =
photons

S
=

∆Nph

∆t

Responsivity (macroscopic paremeter): σ =
i

P

[
A

W

]
Current: i =

e∆Ne

∆t

Power : P = φhν

Respositivity 2: σ =
ηe

hν

4.2 Photodiodes, photodetectors and metohods of detection

PHOTODIODES

Suppose to have a detector with a surface known, S(m2).
If the beam is uniform, with intensity I, the power received is P = IS.
For photodiodes the output is measured in terms of current produced: i = σP .

PHOTODETECTORS

The photodiode is typically ampli�ed by a transimpedance gain (resistance) with
Gi→v(V/A) = R(Ω), in order to produce a voltage output: v = Ri = Gi→vσP
Moreover:

v ∝ P ∝ |E|2
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DIRECT DETECTION

One laser beam hits directly the photodetector. We consider the electric �eld of this beam the
following function:

E(t) = E0(1 + α(t))[−j(2πν0t+ φ(t))]

Where:
Amplitude [V/m]: E0

Amplitude modulation: α(t)
Frequency: ν0 = 100THz
Phase/frequency modulation: φ(t)

What is measured?

v(t) ∝ EE∗ = (E0)2[1 + α(t)]2 ∝ P (t) = P0αAM(t)

It's apparent that the all information about frequency/phase is lost.
Besides, usually the αAM < 1, since it refers to an attenuation.

BEAT NOTE OF TWO OPTICAL SIGNALS/ COHERENTE DETECTION

Received signal: ER(t) = ER0 exp[−j(2πν0t+ φ(t))]

Local oscillator: EL(t) = EL0 exp[−j2φνLt]

For semplicity we consider nill the phase/frequency modulation of the local oscillator and
both �elds linearly-poplarized. Hence, for the superposition theorem: E(t) = ER(t) + EL(t)

Do consider the beam uniform:

P (t) = IS = S
EE∗

η
=
S

η
(ERE

∗
R) + (ELE

∗
L) + (ERE

∗
L) + (ELE

∗
R) = |E|

√
S

η
=
√
P

And �nally:
PR(t) = PR + PL + 2

√
PRPl cos[2π(νR − νL)t+ φ(t)]

Beat note: νR − νL = νIF

Maximum: PMAX = [
√
PR +

√
PL]2

Minimum: PMIN = [
√
PR −

√
PL]2

The most particular case: ER0 = EL0 = E0 and hence PR = PL = P0. We can the observe
complete interference between the signals. It means that EMIN = 0 and EMAX = 2E0, for
which PMIN = 0 and PMAX = 4E0.

About interference: the fringes of visibility are periodic �uctuations of the power value
between its maximum and minimum. We can write that

V =
PMAX − PMIN

PMAX + PMIN

The plot of these fringes change if we change the ratio PR/PL
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5 Laser alignment and dimensional measurements

To start, we want to exploit te possibility of keeping the beam well collimated, with constant
spot size during propagation. In general we want to minimize it in the working region, that
has a range of ±z. Hence, we must design an optimal ω0 at the center of this range.
Once that requirements are satis�ed, we can use the beam for practical applications.

Rayleigh range: zR =
πω2

0

λ

Spot size: ω(z) = ω0

√
1 +

(
z

zR

)2

Radius of curvature: r(z) = z

[
1 +

(
πω2

0

λz

)2
]

= z

[
1 +

(zR
z

)2
]

What happens when z � zR?

ω(z) ≈ λz

πω0

≈ θz the diverging becomes linear

r(z) ≈ z

More precisely when z =∞, the wave is said to be plane. Moreover, when z = zR, then
|rmin| = 2zR.

The collimation region in which we are interested is de�ned as follows: from AMIN to 2AMIN ,
from ω0 to

√
2ω0, from r =∞(z = 0) to r = ±zR.

For a plane-spherical Fabry-Perot cavity there is a speci�c value which is usually known: the
ROC, that is the radius of curvature computed at distance L from the central lens.

ROC = r(L) = L

[
1 +

(
πω2

0

λL

)2
]

While L is �xed, ω0 is not given, but we must evaluate it:

ω0 =

√
λL

π

[
ROC

L
− 1

]1/4

For stability L� ROC.
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5.1 Propagation through lens and radius trasformation

Geometrical optics:
1

r1

+
1

r2

=
1

f

Distances from the central coordinate: Li = z(ωi)− z(ωi,0)

"Thin Lens" condition: ω1 = ω2

In Far-Field region: ri ≈ Li

Hence:

r1θ1 = r1
λ

πω1,0

= ω1 ≈ ω2 = r2
λ

πω2,0

= r2θ2

And �nally:
r1

ω1,0

=
r2

ω2,0

→ ω1,0

ω2,0

∼ r1

r2

∼ L1

L2

Or also:
ω1,0

L1

=
ω2,0

L2

Magni�cation factor: m =
ω2,0

ω1,0

=
r2

r1

=
L2

L1

5.2 Collimation over a range ±z through a telescope

As mentioned before, now that we have our scheme, we want to minimize ω(z∗).
Firstly, we suppose to know ω0 at the center of the range. If we derive ω(z∗)2 over ω2

0

(exploiting indeed a substitution) we obtain:

dω2

dω2
0

= 1−
(
z∗

zR

)2

= 0→ z∗ = zR =
πω2

0

λ
⇒ ω0 =

√
λz∗

π

Note that z* is half-width of the total collimation range.
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Relations for the lenses:
ωOL
d

=
ω0,f

f
and

ω0,f

F
=
ω0

Z
.

Magni�cation: ω0 '
Z

F

f

d
ωOL ⇒ m =

ω0

ωOL
=
Z

F

f

d
=
Z

d

1

M

The relative variations:
∆ω0

ω0

=
∆f

f

To adjust the values of ω0 and Z it is su�cient to move the lens with short focal length, the
one before the "pinhole", provided that f � F .

5.3 Beam centering on a target and Position-Sensitive
photo-detectors

First to know: a photodetector is used to get an electrical signal that is proportional to the
alignment. Ths signal is used as feedback and an elctro-mechanical system provides the
alignement control.

4-QUADRANTS PHOTODIODE: the surface is typically circular and divided into 4 parts by
symmetrical axis. When the light beam hits the detector, a photocurret arises, produced in
the depletion region of the p-n junction. We measure a di�erent value for each part. Next, we
combine them and we compute the signals referred to the x and y axis, as follows:

X-signal: SX = (S2 + S4)− (S1 + S3)

Y-singal: SY = (S1 + S2)− (S3 + S4)

Power: P0 ∝ S0 = S1 + S2 + S3 + S4

PSD PHOTODIIODE: there are two metallic stripes at the ends of the surface, along the x-
and y- directions. The superior surface is made of p-doped semiconductor and the metallic
stripes are anodes. On the other hand, the inferior surface is made of n-doped semiconductor
and the metallic stripes are catodes. In between, the semiconductor is intrinsic.
When the light beam hits the superior surface, a photocurrent arises and it �ows from the
catodes to the anodes. Di�erences in current detected on the same electrode pairs gives the
corresponding coordinate.
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5.4 Examples of Measurements

Preamble: how to trasform an angular unit into spatial coordinate ("position")

In general, r = f tan(θ) ≈ fθ for θ � 1
De�nition of "�eld of view" : θFOV = rPD/F , with F the focal length of a objective lens ('L' in
the picture).

Wire dimeter measurement

The wave is approximately plane untill it dosn't reach the wire. The interaction with the wire
leads to wave di�raction and interference. Do suppose that D � λ. The pattern of the fringes
is approximately rectangular. Next, the electric �eld on the detector is computed by means of
the Fourier Transformation of the "aperture" (the rectangular pattern). Besides, remember
that the power is proportional to the electric �eld.

We obtain the sinc

(
πθ

λ/D

)
.

Angular distribution: I(θ) =
E2

0

η0

sinc

(
πθ

θD

)
Di�raction angle: θDiff = ±λ/D

Zeroes on the detector: Xzeroes = ±FθD = ±F λ/D⇒ D = F λ/Xzero

17



Particles diameter measurement

This device is used to measure the di�racted light by suspended patciles whitin a �uid. A
photodiode measures the I(R) and inverting its expression the distribution of particles
diameter is derived. Di�erently from the previous example, D > λ.
The Fourier transformation is referred to the aperture of this case, that is circular:

somb

[(
R

F

)(
λ

D

)]
=

[
θ

θDiff

]
Suppose to know R, that is the distance of the fringe from the center of the detector
(R = Fθ), and p(D), that is the probability distribution function of �nding a certain particle
with dimeter D.
Hence:

I(R) = I0

∫
0→∞

somb2[(D/λ)(R/F)]p(D)dD
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6 Optical Telemeters

De�nition:tele-metry means measuring the distance between the instrument and a remote tar-
get, respectively called laser range-�nding and laser range-�nders.
There are three methods:

� triangulation; that is a trigonometric method, historically apllied to measure the dis-
tance to the stars. The target is triangulated from two points apart D ont the same
baseline and measuring the angle between the two line of sight. Then L ≈ D/α, since
tanα ≈ α.

� time of �ight; that consists into counting time intervals or phase di�erences. It's achiev-
able using pulse laser of CW-sine-modulated lasers.

Time interval: T = 2L/c⇒ L = Tc/2

Phase di�: ∆φ = 2πfmT = 2πfm(2L/c)⇒ L = c/2fm∆φ/2π

� interferometry. This last method consists into counting the number of optical wave-
lengths, ∆ϕoptical. The laser sent hits the target and comes back to the start, where is
coherently detected. The signal goes as cos(2kL), whit k = 2π/λ. Actually teh distance is
counted in terms of half-wavelenghts.

6.1 Triangulation

General Scheme of an optical passive triangulator

D

L
= tanα ≈ α se α << 1⇒ L =

D

tanα

For really long distances the triangulation becomes unrealible. For istance, the absolute error
is:

∆L = −D
α2

∆α = −L
2

D
∆α = −κ2∆α

Where κ is the sensitivity. The relative errore is instead de�ned as follows:

∆L

L
=

∆α

α

Now, if we had placed a mirror at distance D from the telemeter and we send a light pulse (by
menas of a laser) to the target, two "rays" come back and combine. To focus on the target we
have to rotate the mirror, in order to in�uence the superposition of the rays.
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We can achieve an accurate measurement even with laser and lenses. Furthemore, this type of
triangulation is also very repeatable.
The laser beam undergoeas a round trip path, and photodetector measures the angle α
between the incident and re�ected beam. We use visible λ for semplicity.

� tan(α) = D/L = x/frec, for geometric reasons. Consequently L = (D/x)frec ∝ 1/x;

�
D/L is small but not too much, the minimum distance depends on the length of the CCD
(the photodetector);

� "IF" is an interference passband �lter that removes ambient light.

� Remind that, in the case of a gaussian beam: θLfill = θTL and θTL = θrecfrec. Hence:

ωL
fill

=
ωT
L
,
ωT
L

=
ωrec
frec
⇒ ωrec =

frec
fill

ωL
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Suppose that we change the target position. We would have a variation ±∆L.

Since L =
D

x
frec because α =

frec
x

, derive L over x leads to this following relation:

∆L = −D
x2
frec∆x

We don't care about measuring α like with passive triangulators, but we obtain the same
equation anyway.
Finally:

∆L

L
= −∆x

x
= −∆α

α
.

6.2 Power Budget in optical telemeters

Above all, L � fs, fr, Ds, Dr. Secondly, the vertical surface is de�ned non-cooperative, its
di�usity is less than one: δ < 1. On the other hand, the corner cube is cooperative, R ≈ 1.

The divergence angle is: θs =
ds
fs

As for cooperative surfaces, they behave like a mirror: if we sent a beam against a vertical
mirror it eventually returns, but the spot size will be twice as large. Moreover, the receveir will
see the source at distance 2L. The corresponding beam spot size (diameter) is θs2L.
Hence, a quality parameter involving the power is the ration between received power and power
from the source.

Pr
Ps

=
(π/4)D2

r

(π/4)θ2
s4L

2
< 1
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It's computed as the ratio between the receiving area and the receiving beam area.

� Case 1: the corner cube is smaller than spot size, Dcc < θsL, but the receiver collects
all re�ected light (unrealistic). As we will see, it's computed as the areas ratio at corner
cube. Suppose that Dr = 2Dcc:

Pr
Ps

=
D2
r

θ2
sL

2
=

4D2
cc

4θ2
sL

2
=

D2
cc

θ2
sL

2

� Case 2: if, in addition to the corner cube, even the receiving lens is shorter than re�ected
beam spot size, we came back to the formula introduced before. Th ratio between received
and emitted power is the areas ratio at the receiver. We can say then, both "mirror" and
receving lens are cutting the beam. The more realistic condition is when Dr < 2Dcc.

Atmospheric attenuation.

In reality the laser undergoeas absorption and scattering losses due to molecules and particulate
alawys present in the atmosphere. Mathematically, a rigorous expression is:

P (z = 2L)

P (z = 0)
= exp(−α2L) = Tatm (Lambert-Beer Law)

Where α is the attenuation coe�cient, α(λ) = a(λ) + s(λ).

Atmosphere coe�cient

Very Clear α = 0.1km−1

Clear α = 0.3km−1

Little α = 0.5km−1

Foggy α� 0.5km−1

When we have to take into account the atmospheric attenuation:
Pr
Ps

= Tatm
D2
r

θ2
s4L

2

Equivalent Length: Leq =
L√
Tatm

= L exp(αL) > L

Telemeter gain: Gc =
1

θ2
s

, with "C" the cooperative target

Telemeter Power budget:
Pr
Ps

= Gc
D2
r

4L2
eq
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6.3 Solid Angle, Brightness, Lambert Emitter

SOLID ANGLE

Arc: "r"

Radius of the arc: "R"

Radian (plane angle): θ =
r

R
Cap Area: "S"

Steradian (solid angle): Ω =
S

R2

The solid angle is computed by means of a proportion: Ω : Ωtot = S : Stot.

Hence, considering a sphere: Ω = 4π
S

Ssfera
= 4π

πr2

4πR2
=

r2

R2
π = πθ2

RADIANCE, OR BRIGHTNESS
Suppose to have a surface emitting radiation.

In�nitesimal surface: dS

Normal direction: ~n

Direction of interest: ~r

Angle between n and r: θ

Visibile surface: dSvis = ~n~rdS = dS cos(θ)

Power emitted by dS: dP = L(dΩdS cos(θ))

Radiance/Brightness: L

The brightness is the ratio of power per unit solid angle, per unit surface in the direction of
view.

L = B =
dP

dΩdS cos(θ)

LAMBERT EMITTER

The radiated light depends on the cosine function of the angle referred to the normal direction

Maximum: IMAX = I0, along the normal direction (θ = 0)

Minimum: IMIN = 0, along direction θ = ±90

Intensity: I = I0 cos(θ)

Far from the source (R � "source size"): dP/dS ≈ P/S = I

Brightness: B = L = I0/dΩ = constant
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It is evident that B is constant with θ.
In the following picture the polar diagrams of B and I:

Note that the diagram of B is a half of a sphere, i.e. the external one.

Now, we want to compute the power emitted in the superior half space. To indicate Lambert
Emitter we use the acronym LE:

Intensity: I(θ) = I0 cos(θ) = BLE
ALE
R2

cos(θ)

In�nitesimal area: dA = 2π[Rsin(θ)][Rdθ]

Power emitted: PLE =
∫
A
I(θ)dA =

∫ π/2
0

(. . . )dθ = BLEALEπ

The "equivalent" solid angle is �nally de�ned, with respect to the previous result: Ωeq = π
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When we work with a non-cooperative target, its illuminated surface, with area AT , is
di�using light with a di�usion coe�cient δ < 1. Suppose that this target respects the Lambert
characterization (Lambertian di�user):

BLE =
I

π
=

δPs
πAT

In general, with a non-cooperative di�using target...

Fiel of view of the receiver: θr =
Dr

2L

Receiver solid angle: Ωr = πθr =
πD2

r

4L2

These parameters are used to evaluate by which angle the target is seen by the receiver. The
power collected by the receiver is:

Pr = BTATΩr =
δPs
πAT

At
πD2

r

4L2
= δ

D2
r

4L2
Ps

In the end, to compute the POWER BUDGET we obtain:

Pr
Ps

= δ
D2
r

4L2

It's evident that the power received is independent from the area on the target and the power
budget resembles the formula of a cooperative target with δ instead of 1/θ2

s .

6.4 To summarize...

Considering losses due to Tx and Rx optics (Topt ≤ 1) and round trip propagation in the
atmosphere (Tatm ≤ 1):

Cooperative target:

[
Pr
Ps

]
C

= Toptic,C Tatm,C
D2
r

θ2
s4L

2

Non cooperative target:

[
Pr
Ps

]
NC

= Toptic,NC Tatm,C δ
D2
r

4L2

Gain: Gc =
Toptics,c
θ2
s

or instead Gnc = Toptics,ncδ

Equivalent Field Of View: FOVEQ =
Dr

2L

Very General expression :

[
Pr
Ps

]
= G

D2
r

4L2
eq

= G FOV 2
EQ
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6.5 Time of Flight Telemeters

T =
2L

c
⇒ L =

c

2
T

� Variations: ∆L =
c

2
∆T ⇒ ∆L

L
=

∆T

T

� Length resolution ∆L of the measurement depends on the time resolution, ∆T and so
on the pulse duration τ .

� Time resolution measures the possibility to locate the pulse, on the time axis. We need
a τ smaller the ∆T . This requirement is satis�ed if we work with fast photodetector

electronics: B ≈ 1

τ
.

� In general we can measure the time interval by means of an electronic counter,
associated to a frequency of clock. It counts the number of clock cycles starting at the
time instant at which the laser signal is emitted and it ends the counting when the
returning signal is photodetected. Then, since T doesn't likely fall exactly on clock, we
have to measure the uncertainty.

Time interval T: T = tstart − tstop ≈ NTc

Time interval of the clock: Tc =
1

fc

Uncertainty: uq(t) = σ(t) =
Tc√
12
≈ 0.3Tc ≈ Tc

Total uncertainty: u(T ) =
√
ustart(t)2 + uend(t)2

Clock synchronous with start: u(T ) = u(tstop) =
Tc√
12

Choosing Tc short enough the uncertainty will depend majorly on the overall amplitude noise,
sum of the electric circuit noise and ampltidue noise of the detected optical signal. We've
de�ned the TOF as follows: T = tstop − tstart. The variance of this parameter, caused by the
noise, is:

σ2(t) = σ2(tstart) + σ2(tstop) ≈ σ2(tstop)
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The latter approximation is logical since the light pulses returning back from the target are
less powerful than emitted ones.

We are able to determine the location of the pulses on the time axis thanks to a trigger circuit.
This circuit "takes note" of the time istant at which the output of the photodetector (optical
power, irradiance or voltage) is greater than a reference value, in general referred as S0.

As we can see from the picture, the signal variation σs is converted into time variation σt by
means of the slope at trigger point. Great slope → σt is small.

Look at the following subsection to know something more about the ambiguity and how to
deal with it in the case of a pulsed laser source.

6.6 CW sine-modulated telemeters
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Time of �ight: T =
2L

c
= ∆T

Optical power (modulated) : P (t) = P0[1 +m sin(2πfmodt)]

Delays proportion:
∆ϕ

2π
=

∆T

Tmod

Period: Tmod =
1

fmod

Phase di�erence: ∆ϕ = 2πfmod∆T = 2π
1

Tmod
∆T = 2π

1

Tmod

2L

c

Length: L =
c

2

∆ϕ

2πfmod

Sensitivity: S =
∆ϕ

L
∝ L

The sensitivity tells us how ∆ϕ changes with a change in the distance. By increasing the
frequency we can increase the sensitivity, but when fmod is too high we can occur in
measurement ambiguity.
This ambiguity concerns the task of distinguishing targets at di�erent distances which may
return the same information. To avoid this problem:

1. With pulsed telemeter:
TNA = T (LNA) ≤ Trep

Where TNA is the maximu time of �ight, corresponding to the maximum distance LNA
correctly measured before ambiguity.

2. CW sine-modulated telemeter:

ϕNA = ϕ(LNA) = 2πfmodTNA ≤ 2π ⇒ fmod ≤
1

TMAX

In the end we derive that TNA ≤
1

ftelem
, where ftelem is a combination of frep and fmod.

Note that the condition on the phase di�erence is derived from the fact that in the
worst scenario (L = LMAX) the phase shift must be less than 2π.
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6.7 System equation, telemeter SNR, equivalent Power, SNL

Total power noise: Pn = Pr+ < shot, noise > + < electronic, noise >

SNR: S/N =
Pr
Pn

Telemeter equivalent power: Peq = GPs =
4L2

eq

D2
r

Pr =
4L2

eq

D2
r

S

N
Pn

Once we've �xed some parameter, like S/N and Dr, lets plot Peq versus Leq on bilogarithmic
scales. We will see the typical ranges to work with for typical values of Pn and with respect to
the tecnology exploited (pulsed laser or CW).

The causes of the "optical" noise:

� noise associated to the received signal(Pn,s)

� noise associatd to background light(Pn,bg)

� noise of photodetector and transimpedance ampl�er("front end", Pn,el)

⇒ Pn = Pn,s + Pn,bg + Pn,el

Now, de�ning I as the DC/signal current: Ir = σPr is the useful signal current, and
Ibg = σPbg is the backgroud contribution. In total Irec = Ir + Ibg. We will use the symbol Iel,0
to refer to the "virtual" equivalent DC noise current.
For what concerns the AC �uctuations:

1. shot noise on Ir → i2r = 2 e Ir B → in,s

2. shot noise on Ibg → i2bg = 2 e Ibg B → in,bg

3. electronic noise: i2el = 2 Iel,0 B → in,el

Since these are thre uncorrelated quantities, the global variance, or total power, of current
noise at PD is:

i2n,rec = i2n,s + i2n,bg + i2n,el ⇒ in,rec = 2eB(Ir + Ibg + Iel,0)

Next, dividing all these electrical photocurrents by the squaredd spectral responsivity (σ2) we
get the optical power noise at the receiver input:

P 2
n =

i2n,rec
σ2
⇒ Pn =

2hν

η
B(Pr + Pbg + Pel,0)

This last quantity is the variance of the optical power, or overall noise power.

29



Background Light

It is not very clear what is "scene", with respect to the concept of background. Look at the
following formulas to have an idea of how these terms are used.

Geometrical analysis of background light: Pbg = BscΩscAr

Brightness (Lambertian di�user): B =
δIsc
π

Spectral irradiance of solar light: Esc (W/m2µm)

Optical intensity of the scene: Isc = Esc∆λ

Optical intensity at the receiver: Ibg =
1

π
[δscIsc]Ωsc

Numerical Aperture: NA = sin

(
Dr

2f

)
Solid angle: Ω = πθ2 ≈ π(NA)2

Area of the receiver: A =
πd2

r

4

Background power: Pbg = [δscEsc∆λNA
2]

(
πd2

r

4

)
SNL

SNL is the acronym for shot-noise limited.

We know the relation betwen Signal and time axis for laser pulsed telemeter, and we've seen
that we can convert the signal variation into time variation by means of the slope:

σ2
t =

σ2
s

[dS/dT ]2

Now, in SNL condition, the background light and electronic noise do not a�ect the total power

at the receiver. Hence, σt ∝
τ√
Nr

, where Nr is the number of photons that reach the receiver.

With a CW sine modulated telemeter, we obtain that σt =
1

2πfm

1√
Nr
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7 Interferometers

7.1 Working Principle

Generic Scheme:

We call reference path the direct connection between the beam splitters, while we call
measurement path the other one.
The reference path is always kept constant. On the contrary, the measurement path can
change: we move the mirrors, at �xed distance in between, by ∆L(t). The measurement path
increases by 2∆L
Before the �rst beam splitter and after the second one the electric �eld are summed togheter.
At the output we can see the pattern of their interference.
To evaluate the output of the photodiode, the photocurrent Iph, we must take into account
the phase di�erence between the paths:

Iph = σ|E1|2 = σ|Er + Em|2 = σ|Er exp(jφr) + Em exp(jφm)|2

⇒ Iph = σ[E2
r + E2

m + 2EmErRe{exp(φm − φr)}] = Im + Ir + 2(ImIr)
1/2 cos(φm − φr)

Next we de�ne Iaverage = IAV E = I0 = Im + Ir and the expresion of the photocurent becomes:

Iph = I0{1 +

[
2(ImIr)

1/2

Im + Ir

]
cos(φm − φr)}

Besides, focusing on the phase di�erence:

φm − φr = k[Lm + 2∆L(t)]− kLr = k[Lm + ∆L(t)− Lr] =
2π

λ
[Lm + ∆L(t)− Lr]

Observations:

� remind that the power is proportional to the photo detected current. Hence
P (t) = Pm + Pr + 2

√
PmPrcos(ϕ(t))

� if Em = Er → IMIN = 0 and IMAX = 2I0

� if φm − φr = 2π ↔ ∆L = λ/2. This means that if we move the mirrors by λ/2 we �nd the
previous or the following fringe of interference.

� if we measure the derivate signal, we observe 2 counts per interferometric fringe.
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These generic scheme and relations are the same caracterizing the homodyne coherent
detection setup. From chapter 4 we know that a heterodyne coherent detection is referred to
two signals that interfere with each other, with a beat note νR − νL. "Homodyne" means that
these two frequencies are equal.
Thanks to all these properties we can always work at the quantum-limit regime of detection:
the signal to noise ratio is optimum and it depends only on the signal level, improving for
increasing signal level.

Quantum-limit regime of detection

Current photo-generated: Iph

Current generated in the "dark": Id

Signal : S = GIph

Quantum Noise: QN = QNIph +QNId = 2eIphG
2FB + 2eIdG

2FB

Thermal Noise: TN =
4kBTB

RL

Total Noise: N = QN + TN

Observations:

� e is the electronic charge, B is the observation bandwidth, F is the excess noise factor.
F = 1 for an ideal ampli�cation process, otherwise is less greater than 1, also by far.

� if Iph � Id +
2KBTB

e

1

RLG2F
(or, equivalently: QNIph >> QNId + TN) the signal to

noise ratio can be written as follows:

(S/N)rms =
IphG√

2eIphG2FB
=

√
Iph

2eFB

The detection circuit is said to work at the quantum-limit regime or Shot-Noise Limited
(SNL). As mentioned before, S/N depends majorly on the photocurrent and bandwtdh,
not on the type of detector used, nor G, nor RL.
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7.2 Michelson Interferometer

Iph = I0[1 + cos(2k(Lm − Lr))]

Where I0 = 2Im = 2Ir = 1/2σPL.
How it works? Well, moving the mirrors we can change the distance Lm. If 2k(Lm − Lr) = 2π
we met the next interferometric fringe. Thus, we have a measurement of the di�erence
between the distances by counting how many fringes we see appearing. This means that the
resolution is ∆λ/2, if the distance is less than this value we have not a number of fringes to
convert into spatial lenght.
However, ther are two issues with this setup: the light is re�ected back into the cavity and the
alignment of the mirrors is a very critical operation.
The solution consists into replacing the normal mirrors and splitters with corner cubes and
corner beam splitter (CBS). There is no longer re�ection in the optical cavity and these
devices are much easier to align. Moreover, the reference corner cube can be attached directly
to the CBS.
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7.3 Ambiguity of the cosine signal: λ/4 plates and setup solutions

With respect to the previous image, we can understand that another issue arises when we
want to measure the moving direction of the target (mirrors).
We know that Iph ≈ 1 + cos(2k(Lm − Lr)) while Iph,aux ≈ 1− cos(2k(Lm − Lr)). Since the
cosine function is even, when the argumet is the same we cannot understand if the target is
coming closer or moving farther. We've developed two di�erent setup to avoid this problem,
but �rstly we must get use to the concept of λ/4 plates.

λ/4 -Waveplate

� Waveplates are made of birefringe materials, most commonly quartz. This material have
optical properties which depends on the polarization of the light, i.e. they have slightly
di�erent indexes of refraction for light polarized in di�erent directions;

� A waveplate has a slow axis and a fast axis, both perpendicular to the direction of the
beam and also to each other. Light polarized along the fast axis experiences a lower
index of refraction and travels through the waveplate faster than light polarized along
the slow axis:

nslow > nfast ⇒ vslow = c/nslow < c/nfast = vfast

� For a smilar reason, the optical path that light sees is di�erent if the beam is
"fast-polarized" or "slow-polarized": Lopt,slow = nslowL > Lnfaster = Lopt,fast.

We exploit this technology to obtain two laser beams (at the output) which present a
well-given phase di�erence:

∆φ = kL(nslow − nfast) = const.

Common values are π or π/2.
The �st one corresponds to the so called "half-wave plates":

∆φ =
2π

λ
L(nslow − nfast) = π ⇒ L(nslow − nfast) = λ/2

The second one to the "quarter-wave plates": L(nslow − nfast) = λ/4
The waveplates are used to trasnform the laser beams inside an interferometer, hence the
light will not have the same polarization state at the input and at the output.

Double-beam Interferometer

With rescpect to the following picture:

Iph,1 = Im + Ir + 2(ImIr)
1/2 cos(2k(Lm − Lr)) = I0[1 + cos(2K(Lm − Lr))]

Iph,2 = Im + Ir + 2(ImIr)
1/2 cos(2k(Lm − Lr) + kλ/4) = I0[1− sin(2k(Lm − Lr))]

I0 = Im = Ir = 1/4σPL

As we can see, Iph,2 is modi�ed by the λ/4 waveplate.
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Signal Analysis:

� The di�erence Lm(t)− Lr varies with time:

� The signals are squared (blu ↔ cos and red ↔ sin) ...

� ... to obtain digital/squared amplitude signals As and Ac:

[LOGIC: IF (A > 0)→ 1, (A < 0)→ 0]
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� The same operation is done with the derivates of sine and cosine signals, and we get
digital/squared slope-signals Ss and Sc:

[LOGIC: IF SLOPE > 0→ 1, SLOPE < 0→ 0]

� Now, what happens if the target changes its position? From the above diagrams we can
determine which direction is following the target by looking at how Sc and Ss change:
while As and Ac are even, the logic values of Ss and Sc are complementary:

Note that 1,2,3,... are time instants. Hence, the time istants of the table one are in
succesion following the axis in the opposite direction. This is useful only to understand

that values are "symmetric", obviously we cannot go back in time.

� Since we have two signal, then 4 jumps each fringe, the resolution goes down to λ/4.
The condition to determine one fringe (F) is: ∆φF = 2π or ∆LF = λ/2. We �nd each
pulse moving the target by ∆Lpulses = λ/8 (it's su�cient to replace λ with the
resolution expression).

� In the end we use a speci�c signal, know as U, which tells us the direction of motion:

U = 1: sign '+', the target is moving farther
U = 0: signa '-', the target is coming closer

There are several issues about the use of a double beam interferometer. I cannot use it in DC
or at a very low frequency. Once we've �xed the baseband B we must respect the limit of its
applicability: τpulse = ∆Lpulse/vmax → vmax ≤ B∆Lpulse. If the otpcial beam is interrupted,
the counts are lost and the measurement shall be repeated. EMI, low-frequency Noise and
enviromental vibrations can cause spurious counts. In the end, the threshold I0 of the
ampltidue-squaring-comparator is di�cult to determine.
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Double-frequency Interferometer

� The Zeeman laser emits on two longitudinal modes, at optical frequencies f1 and f2.
Each of them is cirularly polarized and orthogonal to the direction of propagation.
Obtained applying the magnetic �eld B at the optical cavity.

� The inteferometric phase at PDM , that is 2k(Lm − Lr), is superposed to a carrier of
electrical frequency, fc = |f1 − f2|, that is the beat note of the two optical frequencies.
We must keep in mind tha the movement of the target is a modulation of the carrier,
thus what is the maximum frequency by which you can modulate a carrier? fc +B.
Moreover, even if B can be a very high value, we choose a suitable value, e.g. if
fc ≈ 5MHz, B = 1MHz. We can say that the choosen electrical sideband B sets a limit
to the frequency.

� Photocurrent of reference: Iph,R =
5

100
I0{1 + cos[2π(f1 − f2)t+ ϕ]}

� Measurement Photocurrent:

Iph,M =
95

100
I0{1+cos[2π(f1−f2)t+2kLm−2kLr+ϕ]} =

95

100
I0{1+cos[2π(f1−f2)t+2kLm+ϕt}

� As always : I0 = 1/2σPL. Where σ is the photodiode responsivity, and PL is the total
optical power emitted by the laser.

How to measure ϕm = 2KLm ?
The new approach consist into digital counting of the zero-level crossings, with positive (or
negative) slope, of Iph,r and Iph,M signals, both having a frequency fc ≈ 5MHz. The digital

countner behaves like an integrator, and if we recall that frequency is de�nes as f =
1

2π

dϕ

dt
:

CR =
∫

[0,T ]
(f1 − f2)dt = (f1 − f2)T

CM =
∫

[0,T ]
[(f1 − f2) +

2k

2π

dLm
dt

]dt =
∫

[0,T ]
[(f1 − f2) + 2vm/λ]dt = (f1 − f2)T + 2∆Lm/λ
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...where vm =
dLm
dt

, T is the refresh time of the measurement ∆Lm is the overall target

displacement in a time interval T.

Next, the subtractor in the ciruit evaluates the parameter S = Cm − Cr = ∆Lm/(λ/2).
The resolution is ∆L = λ/2 (or ∆L = λ/4 if we count the semiperiod).
Thus, we can say that the result is the number of half-wavelengths which correspond to how
far the target has been moved. The maximum measurable velocity is:

vmax = (λ/2)B ≈ 0.3m/s

Pros of the double-frequency interferometer:

� the threshold value of the comparator is now set at zero, after an high-pass (AC)
�ltering of Iph,R and Iph,M , without loss of information. This is not possible with the
double-beam interferometer.

� the rejection of EMI and Low-frequency noise is better at f ≈ 5MHz.

7.4 Planirity Measurement and Angle Measurement

When α is di�erent from 0 we �nd an optical path variation of 2αD, in the upper arm of the
intererometer.

∆L = λ/2→ ∆α = ∆L/2D

Analogously with a resolution of λ/4.
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7.5 Performance Limits

Half-Fringe Working Point: HFWP

As we've seen in the previous chapters, with interferometers we can measure path variations
Lm −Lr � λ. To achieve this goal we have to stabilize the intererometer working point to the
so-called "Half-fringe working point", where the system reaches its maximum sensitivity.

Iph = I0{1 + cos[2k(Lm,0 + Lm(t)− Lr)]}

If 2kLR = π/2 +m12π:
Iph = I0{1 + sin[2k(Lm,0 + Lm(t))]}

If 2kLm(0) = m22π:
Iph = I0{1 + sin[2kLm(t)]}

If 2kLm(t)� π/2:
Iph = I0{1 + 2kLm(t)}

And we de�ne the parameter IIS = 2I0kLm(t).
Next, the minimum measurable displacement is called noise equivalent displacement (NED)
and it depends on the phase noise of the laser source (NEPp) and on the electrical noise,
minimum, superimposed on the interferometric signal (NEDQ).

Temporal Coherence and Phase Noise

In reality, electromagnetic waves don't behave like an ideal monochromatic signal. There are
jumps, which are randomly distributed in time. The mean interval between two jumps is
called temporal coherence τc =< tjump+1 − tjump >.

De�nitions:

Laser Linewidth: ∆ν = 1/πτc

Coherence Length: Lc = cτc = λ2/π∆λ

Typical Values:

He-Ne (excellent) : Lc ≈ 300m and ∆ν = 300MHz, with τc = 1µs

Diode laser (good) : Lc ≈ 30m and ∆ν = 3MHz, with τc = 0.1µs

Diode laser (normal) : Lc ≈ 1.5m and ∆ν = 60MHz, with τc = 5ns

39



Fringe Visibility

� The maximum displacement is 2|Lm − Lr|. If 2|Lm − Lr| � Lc, then we cannot perform
an interferometric measures as the signal reduces to a random noise signal.

� Iph = I0[1 + V cos[2k(Lm − Lr)]. The parameter V is known as fringe visibility:
0 < V < 1.

� If we consider a single-longitudinal laser source, with a Lorentzian linewidth, we get

that V = exp[−|Lm − Lr|
Lc

].

Quantum-Limit of detenction

� if 2|Lm − Lr| < Lc we can perform an interferometric meaurement.

� A lower limit exists and it depends on τc: higher is τc and lower is the limit. Remember
that before the minimum measurable displacement has been de�ned as the Noise
Equivalent Displacement, hence NED is the lower limit.

� NEDphase (Noise Equivalent Displacement):

� ∆ν > 0Hz → the lasing frequency is not constant but randomly changes in time:
ν(t) = ν0 + ∆ν(t)

� The phase will be time-dependent:

φ(t) = 2k(Lm−Lr) =
4π

λ
(Lm−Lr) =

4πν

c
(Lm−Lr) =

4π

c
(Lm−Lr)[ν0+∆ν(t)] = φ0+∆φ(t)

� Hence: ∆φ =
4π

c
(Lm − Lr)∆ν =

4π

λ0

(Lm − Lr)
∆ν

ν0

� Finally NEDp is de�ned as:

NEDp = ∆Lrms =
∆φrms

2k
= (Lm − Lr)

∆ν

ν0

=
λ

π

(Lm − Lr)
Lc

� Consequently, if Lm = Lr there is not a limitation on the measurement, since
NEDp = 0. In this case the interferometer is said to be balanced.

� As a consequence of the Measurement and Reference Signal superposition that we can
achieve in laser interferometers, we always work with a homodyne coherent scheme of
detection. For this reason, it is always possible to work at the QUANTUM LIMIT OF
DETECTION. The noise of the system is dominated by the contribution related to the
photo-current Iph and if we consider a quantum detector without internal gain and

F = 1, we have: i2n = 2eIphB + 2eIdB +
4kBTB

RL

≈ 2eIphB.

� For what concerns the quantum noise:

� Iph = I0{1 + V cos[2k(Lm,0 + ∆Lm − Lr)]}
� Signal current at HFWP : IIS = (I0V )2k∆Lm
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� Power signal to noise ratio: (S/N)2 = i2s/i
2
n =

(I0V 2kLm)2

2eI0B

� The NEDQ is calculated for (S/N)2 = 1, solved for ∆LM = NEDQ

� NEDQ =
λ

2π

1

V

(
eB

2I0

)1/2

� In terms of interferometric phase, we can write:

∆φRMS = 2kNEDQ =
2

V

(
eB

2I0

)1/2

=
2

V

(
hνB

2ηP0

)1/2

� Remind that P0 is the optical mean power, where P0 = σPD/i0 and σPD =
ηe

hν

7.6 Acceptance and Radiance (Brightness)

The acceptance of a source is de�ned as a = AΩ, measured in [m2sr]. A is the area of
emission and Ω is the corresponding solid angle. The physical meaning of a is associated to
the number of spatial modes carried by the emitted light.

Virtual source and virtual acceptance.

Next, more precisely, for a signle-mode:

Where w0 is the laser beam waist, ΩLAS is the laser solid angle of emission and θLAS is the
divergence angle.
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Numerical aperture (NAL) of a lens and minimum size of a Single Mode Laser in the focal
plane (the minimum "spread").

Obviously D is the diamter of the lens, while fL is the focal length.

The radiance can hence be de�ned as: B = P/a, measured in [W ×m−2 × sr−1]

In the case of the virtual source: Bs = Ps/a, thus Bvs = Pvs/avs. If all the power emitted by
the source is collected by the lens, then we can write that Bvs = Bs.

The result is valid in general, if there is no absorption/parzialization or scattering in the
trasceiving system, radiance is conserved. If the opposite is true: Bvs = Bs.

Now, when radiance is conserved, the power at the receiver in an optical system can be
estimated as: PR = BsaR, i.e. the radiance of the source times the acceptance of the receiver.
Moreover:

aR = ARΩR→s ΩR→s = As/L

ΩR→s is the solid angle given by the source as seen by the receiver.

Suppose to work with a lambertian di�user, that is an ideal case. To calculate the radiances
at di�erent angles we use the radiance at θ = 0:

E0 = BsΩ0 = Bs
As
R2

.

Eθ = BsΩθ = Bs
As cos(θ)

R2

Eθ = E0 cos(θ) = EMAX cos(θ)

For what concerns the power emitted by the semipherical/Labertian di�user: P = BsAsπ.

42



7.7 Speckle-pattern

In the most realistic case the target is non cooperative. Hence, if a single mode laser
imprenges over a non cooperative di�using target, the back-scattered beam is no longer
"single mode" and we have a typical granular intensity distribution called "speckle-pattern".

The di�user can be seen as a surface with roughness larger than the wavelength ∆z � λ. The
�eld at a generic point P is the sum of many vectors with random phase. Moving from P to
P + ∆P , the �eld gradually loses correlation. We follow a statistical approach to study it.

Intensity of the �eld: J

Mean value: JM

Density function (of the intensity): ρ(J) = 1/JM exp(−J/JM)

The probability to have an intensity lower than JM is: P{J < JM} = 1− e−1 ≈ 63, 2%.
It's for this reason that is called "speckle": the �eld is divided in �ecks of random intensity.
We're facing an intensity-fading problem.

Speckle dimensions

� Trasversal and longitudinal dimensions of the speckle are statistical variables. We can
anyway estimare their mean (or expected) values.

� For a circular di�using target with diameter D, the full statistical approach gives these
results: st = λ(z/D) and sl = λ(2z/D)2. It's logical that sl � st.

� The projections of the out-of-axis speckles are equal to the dimensions of the speckles
along the reference axis (z).

� Each speckle is a single spatial mode area, thus it has an acceptance. Remind that
a = AΩ = λ2.

Solid Angle: Ω = π

[
(D/2)

z

]2

Area (transverse): π
(st

2

)2

Single mode condition: λ2 = π2
(st

2

)2
(
D

2z

)2

Dimensions: st =
4

π

λz

D
sl =

st
θ
≈ 2

π
λ

(
2z

D

)2
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8 Optical Velocimeters

8.1 Measurement Principles

Doppler e�ect on laser beams.

The target moves away: νobserved =
(

1− v

c

)
νlaser

The target gets closer: νobserved =
(

1 +
v

c

)
νlaser

Doppler shift: ∆ν = (νobserved − νlaser) = ±
(v
c

)
νlaser � ν

What happens when the direction of the beam and the velocity of the particle are not the
same? We use the projection of ~v on ~k. With ~k we mean the propagation vector and with ϕ

the angle between the two directions. Hence ∆ν = v cosϕ
v

c
.

Note that the shift is zero if ~v⊥~k
Since the value of the shift is very small with respect to the magnitude of the optical
frequencies, we cannot use a monochromator, or a OSA. We need to measure instead the
heterodyne beat signal with a reference laser beam (unshifted).

LDV: Laser Doppler Velocimeters
Invented in 1964, are used to detect contactlessly a wide range of velocities in moving �uids.
More precisely, it's a technique used to measure the velocity of �uids carrying scattering
particles (naturally existing or arti�cially seeded into the �uids).
The following table shows the possible cases of scattering, the corresponding coe�cient and
how the frequency is "scattered" in depdendency on direction.

Type Coe�cients

Rayleigh (r � λ) αs ∝
r

λ4
f(θ) constant with the angle

Mie (r ≈ λ) αs ≈ λ− const. f(θ) max for θ = 0

The measured signal can be seen as due to:

� Doppler e�ect

� Fringes crossing

� Interferometric phase shift
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The set up

We are looking at a space-dependent interferometer. The two beams crosses at an angle
equals to 2θ ( 2θ = Θ) and the distance between the beams (before the focusing lens) is such

that
R

f
� 1.

The two collimated beams impenges o�-axis on the lens, they get focused at distance f from
the lens, calles "interferometric region".

LDV: interferometric fringes

Wavefronts: approximately plane → ±w0

Interaction zone: ∆X = ±2w0 cos θ ∆Y = ±2w0 sin θ

Approximations: typically ∆X � ∆Y and θ is very small

Phase di�erence at any point: ∆Φ = Φ2 − Φ1 = k2s2 − k1s1

Always looking at the picture, let's compute how the phase di�erence changes from O to A:

∆ΦO→A = [Φ2 − Φ1](O) − [Φ2 − Φ1](A)
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We can understand that, being D the fringe spacing, at the heighs of O and A on the
photodetector there are two friges. Hence ∆ΦO→A = 2π. Now, pay attention to the fact that
moving from O to C in the second beam means changing position without changing the
phase, analogously from O to B for the beam 1 (it's not well drawn, but ÔCA and ÔBA are
square corners).
Hence, from O to A:

∆Φ2(O→A) = Φ2(O→C) + Φ2(C→A) = 0 + k2CA = +(2π/λ)D sin θ

∆Φ1(O→A) = Φ1(O→B) + Φ1(B→A) = 0− k1BA = −(2π/λ)D sin θ

∆ΦO→A = ∆Φ2(O→A) −∆Φ1(O→A) = 2· (2π/λ)D sin θ = 2π ⇒ D =
λ

2 sin θ

Relation between velocity and frequency Thickness of the crossing region varies with position
but D remains the same. To avoid misunderstandings, "D" is used as subscript to indicate the
period and frequency of the di�used signal.
On the time axis, the period of the peaks depends on the velocity of the scattering particle(s),

hence TD =
D

v
.

In general TD ∝ v−1, and fD = 1/TD.

⇒ fD =
1

TD
=

v

D
=

2 sin θ

λ
v ∝ v
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